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ABSTRACT

Bipolar Magnetic Regions (BMRs) provide crucial information about solar magnetism. They exhibit
varying morphology and magnetic properties throughout their lifetime, and studying these properties
can provide valuable insights into the workings of the solar dynamo. The majority of previous studies
have counted every detected BMR as a new one and have not been able to study the full life history of
each BMRs. To address this issue, we have developed an Automatic Tracking Algorithm (AutoTAB) for
BMRs, that tracks the BMRs for their entire lifetime or throughout their disk passage. AutoTAB uses
the binary maps of detected BMRs to automatically track the regions. This is done by di↵erentially
rotating the binary maps of the detected regions and checking for overlaps between them. In this first
article of this project, we provide a detailed description of the working of the algorithm and evaluate its
strengths and weaknesses. We also compare its performance with other existing tracking techniques.
AutoTAB excels in tracking even for the small features and it successfully tracks 9152 BMRs over
the last two solar cycles (1996–2020), providing a comprehensive dataset that depicts the evolution of
various properties for each tracked region. The tracked BMRs follow familiar properties of solar cycles
except for these small BMRs that appear at all phases of the solar cycle and show weak latitudinal
dependency, which is represented through the butterfly diagram. Finally, we discuss the possibility of
adapting our algorithm to other datasets and expanding the technique to track other solar features in
the future.

Keywords: Bipolar sunspot groups(156) — Solar magnetic fields(1503) — Solar activity(1475)

1. INTRODUCTION

Bipolar Magnetic Regions (BMRs) remain one of the
most predominant signatures of solar magnetism as ob-
served on the surface of the Sun. The number of such
regions at a given time represents the solar activity that
waxes and wanes cyclically over a period of 11 years
(Schwabe 1844; Hathaway 2015). These BMRs are gen-
erally the source regions of solar eruptive events (Schri-
jver 2009), and hence they are crucial for the under-
standing of space weather conditions. BMRs are ob-
served to be tilted by an angle with respect to the equa-
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tor, which is found to increase statistically with lati-
tude, which is known as Joy’s law (Hale et al. 1919).
It is observed that the decay and dispersal of tilted
BMRs produce the poloidal field in the Sun through
Babcock-Leighton mechanism (Babcock 1961; Leighton
1964; Mordvinov et al. 2022).
Sunspot groups which mimic the locations of BMRs,

have been traditionally used for the study of BMR prop-
erties (e.g., Howard 1991, 1996; Sivaraman et al. 2007;
Dasi-Espuig et al. 2010) because of the unavailability
of magnetogram data. Since the early 1970s, regular
full-disk measurements of the Sun’s magnetic field have
been started, and now there exist vast archived data
of solar magnetograms from the di↵erent ground-based
(Synoptic Optical Long-term Investigations of the Sun
(SOLIS; Keller et al. 2003), Global Oscillation Network

ar
X

iv
:2

30
4.

06
61

5v
1 

 [a
st

ro
-p

h.
SR

]  
13

 A
pr

 2
02

3

Song Yongliang

Song Yongliang

Song Yongliang

Song Yongliang

songyongliang




2 Sreedevi et al.

Group (GONG; Harvey et al. 1996)) and space-based
(Michelson Doppler Image (MDI; Scherrer et al. 1995)
and Helioseismic and Magnetic Imager (HMI; Schou
et al. 2012)) observatories. To exploit such a large vol-
ume of data for the understanding of BMRs and so-
lar magnetism, various automatic methods has been de-
veloped (Stenflo & Kosovichev 2012; Tlatov & Pevtsov
2014; Jha et al. 2020). In all these studies, each detec-
tion of BMRs has been treated as a new one (Stenflo
& Kosovichev 2012; Jha et al. 2020). However, this ap-
proach may influence the analysis as bigger BMRs have
a longer lifetime and thereby will have higher weightage
in the analysis (van Driel-Gesztelyi & Green 2015). Fur-
thermore, BMR properties, including its morphology,
magnetic field strength, and tilt angle, evolve signifi-
cantly over its lifetime (Ugarte-Urra et al. 2015; Getling
& Buchnev 2019; Schunker et al. 2019, 2020). Hence,
to overcome these limitations, it is essential to track the
BMR to get insight into the physics of the formation and
evolution of BMR. Moreover, the automatic detection
and tracking of magnetic regions also become essential
for monitoring solar activity and events (McAteer et al.
2005; LaBonte et al. 2007). Therefore, an enormous ef-
fort has been made to develop automatic algorithms to
track the BMRs (Higgins et al. 2011; Muñoz-Jaramillo
et al. 2016).
Solar Monitor Active Region Tracking (SMART; Hig-

gins et al. 2011) was developed for the automatic detec-
tion and tracking of magnetic active regions in real-time
for solar eruptive event prediction. Although SMART
does a decent job in identifying and extracting vari-
ous magnetic features, it tends to miss some quiet Sun
magnetic regions. The Bipolar Active Region Detec-
tion (BARD; Muñoz-Jaramillo et al. 2016) is an another
algorithm developed for the detection and tracking of
BMRs. It uses similar techniques to detect BMRs as
SMART but uses the dual-maximum flux-weighted over-
lap method for feature association. The BARD uses hu-
man supervision to correct any errors in detection and
tracking. Furthermore, space-Weather MDI Active Re-
gion Patches (SMARP; Bobra et al. 2021) and Space-
Weather HMI Active Region Patches (SHARP; Bobra
et al. 2014) are the data sets derived from MDI and HMI
magnetograms, respectively which provide the tracked
maps of active regions identified in the magnetic im-
age of the Sun. We note that in SMARP and SHARP,
active regions are not necessarily the BMRs, where a
decent flux balance condition holds.
To the best of our knowledge, there is no existing cat-

alog that can provide the properties of the individual
BMRs throughout their lifetime or at least the course
of their lifetimes. Therefore, we overcome the limita-

tion of existing BMR tracking algorithms and develop a
completely automatic method to track the BMR, which
can be implemented in all sets of magnetogram data.
In Section 2, we have presented a detailed description
of our tracking algorithm and its comparison with the
existing one. In Section 3, we presented some repre-
sentative results based on our tracking algorithm, and
finally, in Section 4, we conclude with our insight on this
new algorithm.

2. DATA AND METHOD

In our study, we use the Line-of-Sight (LOS) magne-
tograms (Cycles 23 and 24) for the period of September
1996 to December 2019 from Michelson Doppler Imager
(MDI: 1996–2011; Scherrer et al. 1995) and Helioseis-
mic and Magnetic Imager (HMI: 2010–present; Schou
et al. 2012) onboard the Solar and Heliospheric Obser-
vatory(SOHO) and Solar Dynamic Observatory (SDO)
spacecraft, respectively. Here, we utilize all the mag-
netograms from MDI, which comes with a cadence of
96 minutes in 1024⇥1024 resolution with a pixel size of
200⇥ 200 (spatial resolution of 400⇥ 400). Although HMI
provides magnetogram data with the cadence of 45 sec
in 4096⇥4096 resolution with the pixel size of 0.500⇥
0.500 (spatial resolution of 100⇥ 100), for the ease of com-
putation, we use one image every 96 minutes as available
for MDI.
The data sets used for the mentioned period contain

1,26,381 fits images (MDI: 56,384 HMI: 69,997). The
number of defective pixels (identified as “Not a Num-
ber”) on the solar disk is calculated for every magne-
togram. If the number is found to be greater than
100, the magnetogram is considered defective and not
included in the analysis.
The data in the magnetograms corresponds to the

line-of-sight (LOS) component of the surface magnetic
field, which is integrated across a spatial resolution ker-
nel. Hence, they su↵er from the projection e↵ect, which
is inversely proportional to the cosine of heliocentric an-
gular distance1. We correct the LOS component for this
e↵ect by assuming the magnetic field is normal to the
solar surface and initially restrict ourselves to less than
0.9 R�. Furthermore, we also noticed that as we go
close to the limb, multiple closely lying BMRs are iden-
tified as one by the detection (Jha et al. 2020). As this
may significantly a↵ect the tracking, we later restrict
our analysis only between ±45� of longitudes.

2.1. BMR Detection Algorithm

1
Angular Distance of the pixel from the disk center.
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Algorithm developed to detect BMRs from the LOS
magnetograms follows the prescription given in Stenflo
& Kosovichev (2012), which was also used in Jha et al.
(2020) with slight modifications. A brief description of
the detection algorithm is as follows. In the first step,
the LOS magnetograms are corrected for projection ef-
fects to obtain the magnetic field component normal to
the solar surface. After that, an appropriate thresh-
old is used for every magnetogram based on its average
magnetic field value to isolate the strong magnetic field
regions. This step is followed by a moderate flux balance
condition (Stenflo & Kosovichev 2012) to get the BMRs.
The identified BMRs are shown in Figure 1a. In the case
of HMI magnetograms, we re-binned the magnetogram
from 4096⇥ 4096 pixels to 1024⇥ 1024 pixels to further
reduce the computational time. By comparing the de-
tected BMRs from the original and the binned data, we
find that this binning does not a↵ect the detection of
BMRs. These identified regions from both data sets are
stored in the form of a binary mask, which acts as the
starting point of our tracking algorithm.
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Figure 1: (a) Magnetogram for 15-11-2000 20:48 with
the detected BMRs represented by white rectangular
boxes. (b) Same as (a) but after the pre-processing (de-
scribed in Section 2.2) of BMR masks. The solid blue
and red dashed circle represents 1.0 R� and 0.9 R�,
respectively.

2.2. Pre-processing of BMR Masks

In Jha et al. (2020), the identified BMR regions masks
are stored as the rectangular regions around the BMRs
(see Figure 1a), which include additional pixels which
are not part of BMR regions and may a↵ect the tracking,
particularly in the case of closely spaced BMRs during
high activity period. Hence, to get rid of those extra
pixels before we start the tracking, we go through the
the following pre-processing steps.
To get the exact morphology of the BMR in the rect-

angular regions of interest (ROI), we picked all the pixels
with magnetic fields greater than 100 G. This threshold

not only leads to a few fragmented pixels in ROI but
also separate poles of the BMR, as they do not always
touch each other’s boundaries. To eliminate the frag-
mented pixels, as well as to join the separated poles,
we apply the morphological closing operation2 using a
circular kernel with an initial radius of six pixels fol-
lowed by an area threshold of 50 pixels. The radius of
the kernel is systematically increased up to 9 pixels at
the step of one pixel until the number of connected re-
gions matches with the number of identified BMRs (i.e.,
the number of rectangular regions, see Figure 1a) in that
magnetogram. Finally, the flux balance condition (Sten-
flo & Kosovichev 2012; Jha et al. 2020) is verified for
each region to ensure that they are BMRs.
In Figure 1b, white contours represent the BMRs after

the pre-processing steps. The information of detected
BMRs after pre-processing is also stored as binary masks
so that it can be used for tracking.

2.3. BMR Tracking Algorithm

Now we come to the core of the work, and that is to
develop an automatic algorithm to track all of the iden-
tified BMRs. Our tracking algorithm employs binary
masks obtained from the last step of pre-processing to
follow the interested regions over their lifetime/disk pas-
sage. The idea of the BMR tracking algorithm comes
from the sunspot tracking algorithm developed in Jha
et al. (2021), which is modified considerably to track
the BMRs in the magnetograms. Now, we discuss the
steps of our tracking algorithm as follows.

1. At the first step, a binary mask is selected from the
archive (Figure 2a1). A BMR, which is not tracked
already (see the marked circle in Figure 2a1), is
isolated in a separate binary mask (Figure 2b1),
and a unique BMR-ID (say 10001) is assigned to
it.

2. Now, we calculate the maximum tracking period
(Tmax) i.e., the time it takes to reach the west limb,
based on the heliographic latitude ✓BMR and lon-
gitude �BMR of the BMR as,

Tmax =
90� � �BMR

⌦(✓BMR)
. (1)

Here, ⌦(✓BMR) is the photospheric di↵erential ro-
tation rate (Jha et al. 2021) for given ✓BMR.

3. In the next step, we take a sequence of observa-
tions (binary masks; say Sequence-a, as shown in
Figure 2a1 – a4) falling in the range of Tmax.

2
We use morph close.pro function available in IDL for this.
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TRACKED TRACKED NOT TRACKED
Figure 2: Representative example of the BMR Tracking Algorithm. The BMR intended to be tracked is marked by a
circle. (a1), (a2) (a3) and (a4) represents the selected binary maps in Sequence-a. (b1), (b2) (b3) and (b4) represents
Sequence-b, the isolated and di↵erenetially rotated binary masks of the BMR, corresponding to the time of observation
in Sequence-a. (c2), (c3) and (c4) represents Sequence-c, obtained by adding Sequence-a and Sequence-b. The zoomed
in view of overlapping region is shown in inset.

4. The binary mask of isolated BMR (Figure 2b1)
is di↵erentially rotated using the drot map.pro
routine in IDL3, to the time of observation of
Sequence-a. For example, b1 is di↵erentially ro-
tated to the time of observation of a2 to obtain b2,
similarly, b1 is di↵erentially rotated to the time of
a3 to obtain b3, and so on. This is represented by
Sequence-b and is shown in Figure 2b1 – b4.

3
It uses di↵erential rotation profile from Howard et al. (1990).

5. In the following step, we add the Sequence-a (Fig-
ure 2a1 – a4) with the corresponding di↵erentially
rotated binary masks, Sequence-b (Figure 2b1 –
b4), e.g., c2=a2+b2, c3=a3+b3 and so on. This
is represented by Sequence-c and is shown in Fig-
ure 2c2 – c3.

6. Now, we go through all the images in Sequence-
c (Figure 2c1 – c3) and check for the overlapping
pixels. If the overlap is more than 150 pixels
(600 arcsec2), the BMR is marked as tracked (Fig-
ure 2c2 and Figure 2c3), otherwise not tracked
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(Figure 2c4). Furthermore, if the overlapping cri-
teria are not met in the consecutive 30 binary
masks (i.e. not enough overlap was detected for
the next 48 hours), we increase the overlapping
criteria to 250 pixels (1000 arcsec2) for the next
observation to ensure that the BMR tracked is the
intended one and not a new one.

7. The same BMR-ID i.e., 10001, is assigned to all
the tracked BMRs in Sequence-c. At this step,
along with BMR-ID, we also store a few other pa-
rameters of the tracked BMR.

8. We repeat all the above steps for each BMR
present in the selected observation period (Fig-
ure 2a1).

9. Once all the BMRs in the first selected observation
are tracked, we go for the next observation and
track only the new BMRs which are not tracked
already. We do this by comparing the BMR-ID
with the stored information in the previous step.

3. RESULTS

3.1. Representative Tracking Results

To demonstrate the result of our tracking algo-
rithm, in Figure 3, we show the evolution of NOAA
region AR9232 (AutoTAB-ID 11436) and AR11390
(AutoTAB-ID 11201), which have been observed in MDI
and HMI, respectively. AR9232 was first identified near
the East limb (25.2� N, �49.3� E) and has been tracked
throughout its disk passage from 18-06-2000 03:11 to
24-06-2000 22:234. Although our algorithm tracks the
AR9232 in 113 observations (images), in Figure 3a, we
only show one snapshot every day for 7 days. In Fig-
ure 3c, we also show the evolution of Bmax and absolute
total flux for AR9232, and we note a systematic and
continuous decrease (except small fluctuation) in both
these quantities. This continuous decrease suggests that
AutoTAB has been able to track the BMR properly, and
it has been picked during its decaying phase, which is
also inferred from the Figure 3. In contrast with our
algorithm, the SMART Algorithm (Higgins et al. 2011)
tracks the same region for a shorter period, from 15-11-
2000 03:15 to 23-11-2000 20:48.
In Figure 3b, we show the evolution of AR11390 ob-

served in HMI in a similar way as for AR9232. This
BMR has been first identified near the East limb (8.3� N,
58.2� E), and AutoTAB tracks it for 8 days (in 122 ob-
servations) till it reaches close to the West limb. The

4
All the mentioned time in this article is in UTC.

variation of total flux and Bmax (see Figure 3d) once
gain show the continuous and systematic variation over
the tracking period. Furthermore, in Figure 3d, we see
that the Bmax as well as absolute total flux, show a
small variation initially, and then they start increasing
rapidly on day 5. Hence, we infer that this BMR has
been tracked from its emergence to the time it crosses
the West limb when AutoTAB loses track of it.
Apart from these two BMRs, in Appendix 5, we also

show the evolution of another tracked BMR which has
been observed in both MDI amd HMI exist (also see
Figure 9). The comparison of Bmax and total flux in
these two BMRs confirms that the AutoTAB is working
in the same way for both the data sets. Please not that
we have scaled up the Bmax measured in HMI by 1.4 to
bring both MDI and HMI at same level (Liu et al. 2012).
By selecting the BMRs randomly from the tracked

data, we observe that similar kinds of variations are con-
sistently present in all the tracked BMRs with a few ex-
ceptions. Therefore, based on these findings, we say that
AutoTAB is very e�cient in tracking the BMRs during
their appearance on the near side of the Sun. Using our
state-of-the-art algorithm, we have tracked 9232 BMRs
in Cycle-23 and Cycle-24 for the years 1996 – 2020. In
the following section, we will discuss some of the statis-
tical properties of these tracked BMRs.

3.2. Statistical Properties of BMRs

In Figure 4, we show the distribution of the
lifetime/disk-passage time for all the tracked BMRs.
From Figure 4, we note that BMRs exhibit a broad range
of lifetimes, varying from several hours to over a week.
Although AutoTAB is not able to track a BMR that goes
into the far side, it has been tracked only in its evolu-
tionary stage. Other than that, we also encountered a
few cases in which the BMR is living for a su�ciently
long time, but they have been detected for less than 5%
of times, in the number of expected frames5 due to data
gaps, corrupted data, or they have been missed during
detection. Hence, after excluding such cases, based on
how they were tracked i.e., either for the whole life or
only in the evolutionary stage, we classified the BMRs
into three classes, which are as follows.

1. Short Lived (SL): The BMRs, which emerge
and decay in the near side of the Sun and have
a lifetime of 8 hours or less, are classified as Short
Lived (SL) BMRs. We segregated this class as
they mainly comprise small BMRs, which may in-

5
Number of expected frames=(Time of last detection-Time of first

detection)/cadence of data.
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Figure 3: Panels (a) and (b) respectively show the snapshots of the tracked BMRs with AR9232 (AutoTAB-ID
11436) and AR11390 (AutoTAB-ID 11201) corresponding to each day during the tracking. Panels (c) and (d) show
the evolution of absolute total flux and Bmax for these BMRs. The vertical lines in (c) and (d) represent the times
corresponding to the time of snapshots shown in (a) and (b), respectively.
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Figure 4: Distribution of the lifetimes of the tracked BMRs of di↵erent classes shown by di↵erent colors.
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clude a few large ephemeral regions with the typ-
ical magnetic flux of ⇡ 1020 Mx. The distribution
of the SL class appears in the right most of Fig-
ure 4. In Figure 5a, we show the evolution of total
flux and Bmax of a typical BMR (AutoTAB-ID
10076) from this class. It is noted from the Fig-
ure 5a that the BMR shown here emerges with
relatively low flux and Bmax and decays withing a
few hours.
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Figure 5: Evolution of absolute total flux and Bmax for
atypical BMRs from (a) SL, (b)LT and (c)DP classes.
AutoTAB-IDs of the BMRs shown in (a), (b), and (c)
are 10076, 10213, and 10399, respectively.

2. Lifetime (LT): Rest of the tracked BMRs, which
have a lifetime of more than 8 hours and have
emerged and decayed in the near side of the Sun,
i.e., they have been tracked throughout their life-
time, are classified as Lifetime (LT) BMRs. The
distribution of the LT class spans around a week
(see Figure 4). An example of evolution of such
BMR (AutoTAB-ID 10213) is shown in Figure 5b.

3. Disk Passage (DP): This class of BMRs has
not been tracked for their lifetime. Instead, they

have only been tracked for a part of their life span.
This class includes all those BMRs, and we classed
them as Disk Passage (DP). This class includes (i)
BMRs that appear near the East limb ( 45�E)
and disappear on the near side, (ii) BMRs that
appear on the near side of the Sun but cross the
West limb (longitude � 45� W) and (iii) BMRs
which appears on the East limb ( 45� E) and
crosses West limb (� 45�W). Here we restrict our-
selves between the longitudes of ±45�, as the un-
certainty in the magnetic field measurement in-
creases towards the limb. Lifetime for this class is
distributed all the way from a few hours to more
than a week. The evolution of flux and Bmax for
one such BMR (AutoTAB-ID 10399) is shown in
Figure 5c.

The snapshots of the evolution of all the three BMRs
in Figure 5 can be found in the data repository6 for
AutoTAB.
The number of BMRs identified in each class is repre-

sented in the Table 1 for the period of 1996 – 2020. Along
with their numbers, we also calculated the mean of area,
total flux, Bmax and Bmean for all these classes, which
are listed in Table 1. From this table, we note that all
these quantities increases as we go from SL class to LT
and DP classes. Hence, we find that the bigger BMRs
have longer lifetimes, which is in agreement with the
earlier findings from the sunspot (van Driel-Gesztelyi &
Green 2015).

After discussing the various classes of BMRs and their
time evolutions, we shall now discuss the collective be-
havior of the BMRs in the aforementioned three classes.

3.2.1. Solar Cycle Variation

The first property that we looked for is, does the num-
ber of newly emerging BMRs obeys the well-known so-
lar cycle behavior. In contrast to the past studies (e.g.,
Jha et al. 2020; McClintock & Norton 2016), where the
same BMR is counted multiple times during their ap-
pearance on the near side, instead here, we only count
each tracked BMR once. Therefore, in Figure 6, we show
the monthly number of newly emerging BMRs with time
for all three classes, SL (Figure 6a), LT (Figure 6b) and
DP (Figure 6c). The number of BMRs in LT and DP
classes obediently follows the known solar cycle behav-
ior based on the conventional sunspot number. Such
behavior is not evident in the case of the SL class. A

6
https://github.com/sreedevi-anu/AutoTAB



8 Sreedevi et al.

Table 1: Some key parameters of di↵erent classes of tracked BMRs.

Classification Number of BMRs Area ±�Area Flux ±�Flux Bmax±�Bmax Bmean±�Bmean

(µHem) (1022Mx) (G) (G)

Short Lived (SL) 1251 20.17 ± 0.71 0.26 ± 0.01 541.32 ± 5.38 197.46 ± 0.66

Lifetime (LT) 3191 88.65 ± 1.05 1.50 ± 0.02 949.20 ± 6.35 224.46 ± 0.81

Disk Passage (DP) 4710 116.87 ± 0.17 2.05 ± 0.01 1436.83 ± 7.02 281.07 ± 0.71

significant number of SL BMRs are also observed during
the solar minima when the toroidal field of the Sun is
weak and only a few large BMRs are produced.
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Figure 6: Time series of the monthly number of unique
BMRs for (a) SL, (b) LT, and (c) DP classes. The
grey-shaded region represent the international smoothed
sunspot number (scaled to BMR counts for better repre-
sentation). Here, vertical strips represent the data gaps.

3.2.2. Latitude-time Distribution

Another crucial property of sunspots is their latitudi-
nal distribution (Hathaway 2015; Jha et al. 2022), the
so-called ‘butterfly diagram’. In Figure 7, we show the
time-latitude distribution of identified BMRs for each
classes, SL (Figure 7a), LT (Figure 7b) and DP (Fig-
ure 7c). Here, each point represents a unique BMR. The
latitude and time of all the BMRs are chosen at a time

when they attain their maximum total flux (represented
by the colors of the points) during the tracking period.
We note that for the DP class, the maximum flux may
not be the actual maximum flux of the BMR, as Au-
toTAB only tracked them during a fraction of their life
span. The interesting thing to note here is that although
the BMR classes LT (Figure 7b) and DP (Figure 7c)
follow the well-known butterfly diagram, the SL (Fig-
ure 7a) class is more scattered over the latitude (a small
latitudinal dependency can still be seen) independent of
the phase of the solar cycle. It could be that SL class
BMRs that appears from the high latitude at the begin-
ning of the cycle and continues till the end of the cycle at
the solar minimum are part of the extended solar cycle
(McIntosh et al. 2015). However, Jha et al. (2020) have
shown that the two classes of BMRs, namely the BMRs
with spot and without spot in white-light images, fol-
low the same latitude-time distribution based on their
classification. Further study is required to dig deep into
the detail, which will be done in the follow-up paper.
Another point to note here is that although the total
number of BMRs in Cycle 23 is less than in Cycle 24,
the fraction of bigger BMRs that falls in the LT and DP
classes is more in Cycle 23.

3.3. Comparisons with Existing Algorithms

In this section, we compare our tracking algorithm
with the existing BMR tracking algorithms such as
SMART (Higgins et al. 2011) and BARD (Muñoz-
Jaramillo et al. 2021; Muñoz-Jaramillo et al. 2021,
2016). To compare with SMART, we select four di↵erent
BMRs tracked by AutoTAB in the year 2008 and com-
pare our findings with SMART’s. We have not imple-
mented the SMART algorithm on our data set. Instead,
we used Helioviewer (Müller, D. et al. 2017)7 to get the
tracking information about the four selected BMRs (see
Table 2).

7
https://helioviewer.ias.u-psud.fr/
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Table 2: Tracking details for the four selceted BMRs for comparison of AutoTAB with SMART.

NOAA Number SMART AutoTAB

SMART Id. Time (dd/mm/2008 hh:mm) AutoTAB-ID Time (dd/mm/2008 hh:mm) Detection

10980 5480.0007 03/01 11:15 – 03/01 19:15 13712 03/01 20:46 – 11/01 07:58 112

5480.0012 03/01 19:15 – 04/01 01:35

. .

. .

5488.0008 11/01 12:47 – 11/01 19:11

- 5622.0012 24/05 19:15 – 24/0522:27 13768 24/05 19:12 – 25/04 22:24 14

- 5512.0003 04/02 04:51 – 04/02 12:51 13717 03/02 11:22 – 07/02 17:36 40

10999 5646.0005 17/06 08:03 – 17/06 14:27 13776 17/06 15:58 – 25/06 09:36 47

5646.0009 17/06 14:27 – 17/06 20:47

. .

. .

5647.0010 18/06 22:23 – 19/06 04:23

Note—The mentioned times are in UTC. The SMART identifiers and NOAA numbers can be cross-verified at
https://helioviewer.ias.u-psud.fr/

The first BMR that we compared is NOAA AR10980,
which AutoTAB has successfully tracked for 250 hours
from 03-01-2008 20:46 to 11-01-2008 07:58, during its
passage across the solar disk with AutoTAB-ID 13712.
In contrast, the SMART algorithm tracked the same
BMR from 03-01-2008 11:15 to 11-01-2008 19:11 with
thirty-one di↵erent SMART Identifiers throughout its
disk passage. Compared to AutoTAB, SMART started
tracking the BMR early in the emergence phase because,
in AutoTAB, the detection and tracking are limited to
less than 0.9 R�.
(ii) The second selected BMR with AutoTAB-ID

13768 does not have an assigned NOAA number (be-
cause it is a small BMR and has not appeared as a
sunspot). This BMR is relatively small in size and has
been identified by SMART for 3 hours. In opposition
to SMART, AutoTAB tracked this particular BMR for
more than a day throughout its lifetime, which indicates
that AutoTAB is doing a better job in tracking of very
small features.
(iii) For our third comparison, the BMR we se-

lected with AutoTAB-ID 13717, which also does not
have an assigned NOAA number. AutoTAB algorithm
tracks this BMR for 102 hours (03-02-2008 11:22 – 07-02-
2008 17:36) with 39 detections in between, whereas the
SMART algorithm has tracked it for 8 hours with one
SMART identifier, which further confirms the e�ciency
of AutoTAB for smaller BMRs.
(iv) The final BMR that we compare is NOAA 1099

with AutoTAB-ID 13776 on 17-06-2008 and was tracked

by the SMART algorithm for two days with 7 di↵er-
ent SMART identifiers. For the same BMR, AutoTAB
tracked it diligently from 17-06-2008 15:58 to 19-06-2008
09:36 and later with fewer and irregular detections (to-
taling up to 46 detections) for the next five days. This
suggests that tracking the BMRs through the complete
disk puts us in an advantageous position, where a BMR
can still be tracked even if it has been missed in some
observations. Complete details of these four BMRs are
shown in Table 2.
Apart from the SMART, we also compared our result

with the BARD Tilt catalog (Muñoz-Jaramillo et al.
2016, 2021; Muñoz-Jaramillo et al. 2021) by calculat-
ing the monthly new emergence in BARD as well as in
AutoTAB algorithm for the overlapping period of 1996-
2016, which is represented in the Figure 8. Here, we
note that AutoTAB consistently detects more BMRs in
both solar cycles, even during the low-activity phase.
For Cycle 24, which is weaker than Cycle 23 in terms of
sunspot number, AutoTAB detects considerably more
BMR than BARD. It could be due to two reasons: (1)
HMI data (during cycle 24) comes with less noise, and
AutoTAB performs well in it, and (2) more number of
small BMRs are observed in Cycle 24 than in Cycle
23 (see Figures 6 and 7). Therefore, it is clear that
our automated code AutoTAB can perform well in low-
noise magnetogram data. However, during the maxi-
mum phase of Cycle 23, AutoTAB possibly misses some
BMRs due to the appearance of many close-lying big
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Figure 7: Latitude-time distribution (butterfly dia-
gram) of the tracked BMRs of (a) SL (b) LT, and (c)
DP classes. The color of the points represents the total
flux of the BMR and the vertical strips represent the
data gaps.

BMRs, which are not identified individually in the rela-
tively noisy MDI data.

3.4. Limitations of Tracking Algorithm

As with any algorithm, the AutoTAB also has some
limitations, which are as follows.
(i) One of the biggest challenges that AutoTAB has

to face is dealing with the multiple BMRs lying closely
together. This issue is mostly carried forward from the
detection and also a↵ects the tracking, and occasionally
multiple BMRs have been tracked as a single one.
(ii) Once BMR crosses the west limb, the AutoTAB

loses track of it, but there are a few cases, particularly
for long-living BMRs, the same BMR could appear in
the East limb after coming back from the far side. In
this case, the AutoTAB treats this BMR as a new one
and gives the unique AutoTAB-ID to it even though
they are the same.
(iii) The last but not least, the detection and pre-

processing steps are strongly a↵ected by the level of
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Figure 8: Comparison of the monthly number of
newly emergent BMRs obtained from AutoTAB (our)
and BARD, along with the traditional monthly sunspot
number (grey shaded area enclosed by line). The
sunspot number has been multiplied by a factor of 0.6
to bring it to the scale of the BMR count. The vertical
strips on the figure represent the data gaps.

noise in the data while identifying the region of interest,
and ultimately it also impacts the tracking.

3.5. Possible Application to Other Data

So far, we have only discussed and demonstrated the
application of AutoTAB on MDI and HMI magnetogram
datasets. So the question is, will it be possible for Au-
toTAB to track the BMRs in other datasets? The an-
swer is yes, but since our algorithm has three major
parts (i) detection, (ii) pre-processing, and (iii) tracking,
all of them will not work in the same way with di↵er-
ent datasets. Although the pre-processing and tracking
are expected to work with various datasets, our detec-
tion algorithm, which is only optimized for MDI (Stenflo
& Kosovichev 2012) and HMI (Jha et al. 2020) magne-
tograms, may not work with other data sets. Thus, for a
given binary mask of the region of interest, the tracking
algorithm can be used, along with pre-processing tech-
nique. Here, we would like to emphasize that even for
pre-processing and tracking, a few constants or thresh-
olds, such as morph closing kernel size, overlapping area
threshold, etc., need to be tuned according to the data.
Furthermore, the AutoTAB tracking algorithm can also
be used to track the other features in the solar atmo-
sphere by optimizing these parameters.

4. CONCLUSIONS

Observational study of the evolving properties of
BMRs is crucial to understand the origin of solar mag-
netic field and cycle. However, due to the unavailabil-
ity of a completely automatic and e�cient BMR track-
ing algorithm, the study of the temporal evolutions of
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various properties of BMRs is limited. We have devel-
oped an automatic algorithm, AutoTAB for tracking the
BMR from magnetograms. It works by taking the bi-
nary maps of the detected BMR as inputs. For detecting
BMRs from magnetograms, we also build an algorithm
following the idea of Stenflo & Kosovichev (2012) and
Jha et al. (2020). Using our developed detection al-
gorithm, we have produced the binary maps of the de-
tected BMRs from HMI and MDI during the solar cycles
23 and 24. By feeding these binary maps in AutoTAB,
we have produced a homogeneous and comprehensive
data set for 9152 tracked BMRs.
AutoTAB is successful in tracking the identified BMRs

through their life on the visible solar disk and in captur-
ing their evolving magnetic and morphological proper-
ties. Representative examples of the dataset have been
presented by showing the snapshots of the evolution of
the BMRs at various stages of their life along with the
progression of unsigned flux and Bmax. Further, case
studies have been performed on the method’s e�ciency
with other existing tracking methods. The study indi-
cates that AutoTAB successfully tracks the BMRs inside
the 0.9 R� with better accuracy and consistency than
the SMART. As AutoTAB works by checking for the
overlap between consecutive binary maps, it remains in-
dependent of the dataset used and can work e�ciently
for tracking other solar features. A comparison between
the number of new emergent BMRs in AutoTAB and
the BARD catalog shows that AutoTAB consistently
detects and tracks more BMRs through the past two
solar cycles compared to BARD. As AutoTAB is fully
automatic, multiple closely lying BMRs might have been
identified as one, which remains one of the major chal-
lenges faced by AutoTAB which needs to be addressed
in the future.
AutoTAB tracks the BMR in a wide range of its

lifetime, from hours to days, which leaves us with
a large volume of tracked information. Hence, the
tracked BMRs have been classified into di↵erent groups,
namely, Short Lived (lives for less than 8 hours), Life-
time (emerges and disperses in the visible surface), and
Disk Passage (coming/going from/to the farside of the
Sun). The tracked BMRs show the usual signatures of
solar cycle variation. We also observe that the Lifetime
and Disk Passage BMRs follow familiar latitudinal and
temporal distributions as seen by the sunspot butterfly
diagram. This distribution is not observed in the case
of Short Lived BMRs as they are the small features that
appear at all times on the Sun. In a follow-up pub-
lication, we shall further exploit the results of tracked
BMRs to compute various properties of BMR which will
help us to identify the origin of BMR formation.
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Technology (SERB/DST), India, through the Ramanu-
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ISRO/RESPOND (project no SRO/RES/2/430/19-
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tained via JSOC, by the courtesy of NASA/SOHO
and NASA/SDO science team. For the compar-
ison of AutoTAB with SMART, data from He-
lioviewer was used. The BARD catalog of BMRs
was downloaded from the solar dynamo dataverse
(https://dataverse.harvard.edu/dataverse/solardynamo),
maintained by Andrés Muñoz-Jaramillo. Sunspot data
has been taken from the World Data Center SILSO,
Royal Observatory of Belgium, Brussels.
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5. APPENDIX: COMPARISON OF THE
TRACKING RESULTS FROM MDI AND HMI

MAGNETOGRAMS

Figure 9a and Figure 9b show the evolution of NOAA
AR11068 from HMI and MDI, respectively. AutoTAB
tracked this particular BMR for a total duration of 153
hours from 05-05-2010 19:10 to 12-05-2010 04:46, dur-
ing its passage across the solar disk, with AutoTAB-ID
10349. As this BMR has been identified in the period
when we have observation from both the instruments
(HMI and MDI). Hence, we track it in both the data sets
for comaparision. Though this BMR was tracked for the
same period of time in both datasets, AutoTAB could
track it more consistently with HMI data (97 detections)
compared to MDI, with only 87 detections. Less detec-
tion in MDI is expected because of relatively larger noise
in the data as compared to HMI data. Nevertheless,
upon closer examination of the evolution of total flux
and Bmax throughout the lifespan of BMR (as shown
in Figure 9c and Figure 9d), we observe that the Bmax

and absolute total flux show outstanding agreement in
both the data sets. For this particular BMR, the total
flux consistently decreases over the lifetime of the BMR,
while Bmax show a small increase in the first few hours
and subsequently decreases. This small increase could
be due to the uncertainity in the measurment of Bmax

near the limb.
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Figure 9: Snapshot of tracked BMR (NOAA AR11068) during its passage on the observable disk as observed in (a)
HMI and (b) MDI. Panels (c) and (d) show the variations of the total flux and Bmax respectively, as observed in both
the data sets. The vertical lines in (c) and (d) represent the times corresponding to the snapshots shown in (a) and
(b), respectively.
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R., & Peñuela, T. 2010, A&A, 518, A7,

doi: 10.1051/0004-6361/201014301

Getling, A. V., & Buchnev, A. A. 2019, ApJ, 871, 224,

doi: 10.3847/1538-4357/aafad9

Hale, G. E., Ellerman, F., Nicholson, S. B., & Joy, A. H.

1919, ApJ, 49, 153, doi: 10.1086/142452

Harvey, J. W., Hill, F., Hubbard, R. P., et al. 1996,

Science, 272, 1284, doi: 10.1126/science.272.5266.1284

Hathaway, D. 2015, Living Rev. Sol. Phys., 39, 227,

doi: 10.1007/lrsp-2015-4

Higgins, P. A., Gallagher, P. T., McAteer, R. T. J., &

Bloomfield, D. S. 2011, Advances in Space Research, 47,

2105, doi: 10.1016/j.asr.2010.06.024

Howard, R. F. 1991, SoPh, 136, 251,

doi: 10.1007/BF00146534

—. 1996, SoPh, 169, 293, doi: 10.1007/BF00190606

Howard, R. F., Harvey, J. W., & Forgach, S. 1990, SoPh,

130, 295, doi: doi:10.1007/bf00156795

Jha, B. K., Hegde, M., Priyadarshi, A., et al. 2022,

Frontiers in Astronomy and Space Sciences, 9, 1019751,

doi: 10.3389/fspas.2022.1019751

Jha, B. K., Karak, B. B., Mandal, S., & Banerjee, D. 2020,

ApJL, 889, L19, doi: 10.3847/2041-8213/ab665c

Jha, B. K., Priyadarshi, A., Mandal, S., Chatterjee, S., &

Banerjee, D. 2021, SoPh, 296, 25,

doi: 10.1007/s11207-021-01767-8

Keller, C. U., Harvey, J. W., & Giampapa, M. S. 2003, in

Innovative Telescopes and Instrumentation for Solar

Astrophysics, ed. S. L. Keil & S. V. Avakyan, Vol. 4853,

International Society for Optics and Photonics (SPIE),

194 – 204, doi: 10.1117/12.460373

LaBonte, B. J., Georgoulis, M. K., & Rust, D. M. 2007,

ApJ, 671, 955, doi: 10.1086/522682

Leighton, R. B. 1964, ApJ, 140, 1547, doi: 10.1086/148058

Liu, Y., Hoeksema, J. T., Scherrer, P. H., et al. 2012, SoPh,

279, 295, doi: 10.1007/s11207-012-9976-x

McAteer, R. T. J., Gallagher, P. T., Ireland, J., & Young,

C. A. 2005, SoPh, 228, 55,

doi: 10.1007/s11207-005-4075-x

McClintock, B. H., & Norton, A. A. 2016, ApJ, 818, 7,

doi: 10.3847/0004-637X/818/1/7

McIntosh, S. W., Leamon, R. J., Krista, L. D., et al. 2015,

Nature Communications, 6, 6491,

doi: 10.1038/ncomms7491

Mordvinov, A. V., Karak, B. B., Banerjee, D., et al. 2022,

MNRAS, 510, 1331, doi: 10.1093/mnras/stab3528
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